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Factorial ANOVA 

Self-test answers 

 

• The file GogglesRegression.dat contains the dummy variables used in 
this example. Use this file and run a multiple regression on the data. 

First load the data (set your working directory first):  
 

gogglesReg<-read.delim("GogglesRegression.dat", header = TRUE) 

The data look like this: 
   gender alcohol interaction attractiveness 
1       1       0           0             65 
2       1       0           0             70 
3       1       0           0             60 
4       1       0           0             60 
5       1       0           0             60 
6       1       0           0             55 
7       1       0           0             60 
8       1       0           0             55 
9       1       1           1             55 
10      1       1           1             65 
11      1       1           1             70 
12      1       1           1             55 
13      1       1           1             55 
14      1       1           1             60 
15      1       1           1             50 
16      1       1           1             50 
17      0       0           0             50 
18      0       0           0             55 
19      0       0           0             80 
20      0       0           0             65 
21      0       0           0             70 
22      0       0           0             75 
23      0       0           0             75 
24      0       0           0             65 
25      0       1           0             30 
26      0       1           0             30 
27      0       1           0             30 
28      0       1           0             55 
29      0       1           0             35 
30      0       1           0             20 
31      0       1           0             45 
32      0       1           0             40 
 
Note how the predictors gender and alcohol have been dummy-coded, and that the variable 
interaction is these two variables multiplied together. To create the model (with 
attractiveness as the outcome and the other three variables as predictors) and see the 
output we can execute: 

gogglesRegModel<-lm(attractiveness ~ gender + alcohol + interaction, data = 
gogglesReg) 

summary(gogglesRegModel) 

summary.lm(gogglesRegModel) 

 

 

• Use ggplot2 to plot a line graph (with error bars) of the attractiveness of 
the date with alcohol consumption on the x-axis and different-coloured 
lines to represent males and females. 

To do a multiple line chart we need to execute these commands: 

line <- ggplot(gogglesData, aes(alcohol, attractiveness, colour = gender)) 
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line + stat_summary(fun.y = mean, geom = "point") + stat_summary(fun.y = mean, geom = 
"line", aes(group= gender)) + stat_summary(fun.data = mean_cl_boot, geom = "errorbar", 
width = 0.2) + labs(x = "Alcohol Consumption", y = "Mean Attractiveness of Date (%)", 
colour = "Gender") 

The resulting graph can be found in the book chapter. 
 

 

• Use ggplot2 to plot boxplots of the attractiveness of the date at each 
level of alcohol consumption on the x-axis and different panels to 
represent males and females. 

boxplot <- ggplot(gogglesData, aes(alcohol, attractiveness)) 

boxplot + geom_boxplot() + facet_wrap(~gender) + labs(x = "Alcohol Consumption", y = 
"Mean Attractiveness of Date (%)") 

The resulting graph can be found in the book chapter. 
 

 

• Plot error bar graphs of the main effects of alcohol and gender. 

To plot these error bar for the main effect of gender execute: 

bar <- ggplot(gogglesData, aes(gender, attractiveness)) 

bar + stat_summary(fun.y = mean, geom = "bar", fill = "White", colour = "Black") + 
stat_summary(fun.data = mean_cl_normal, geom = "pointrange") + labs(x = "Gender", y = 
"Mean Attractiveness of Date (%)") + scale_y_continuous(breaks=seq(0,80, by = 10)) 

To plot these error bar for the main effect of alcohol execute: 

bar <- ggplot(gogglesData, aes(alcohol, attractiveness)) 

bar + stat_summary(fun.y = mean, geom = "bar", fill = "White", colour = "Black") + 
stat_summary(fun.data = mean_cl_normal, geom = "pointrange") + labs(x = "Alcohol 
Consumption", y = "Mean Attractiveness of Date (%)") + 
scale_y_continuous(breaks=seq(0, 80, by = 10)) 

Note that I’ve used scale_y_continuous() to override the defaults for the y-axis. Specifically, I 
have used the breaks option to specify the numbering along this axis: breaks=seq(0, 80, by = 
10) uses the seq() function to create a sequence of numbers from 0 to 80 in steps of 10. 
Therefore, we get axis labels at 0, 10, 20, 30, 40, 50, 60, 70, 80 (the defaults were 0, 20, 40, 
60, 80). 

Oliver Twisted 

Please Sir, can I have some more … contrasts? 

 Another example of using contrasts 
Imagine a clinical psychologist wanted to see the effects of a new 
antidepressant drug called Cheerup. He took 50 people suffering from clinical 
depression and randomly assigned them to one of five groups. The first group 
was a waiting list control group (i.e. they were people assigned to the waiting 

list who were not treated during the study), the second took a placebo tablet (i.e. 
they were told they were being given an antidepressant drug but actually the pills contained 
sugar and no active agents), the third group took a well-established selective serotonin 
reuptake inhibitor (SSRI) antidepressant called Seroxat (Paxil to American readers), the 
fourth group was given a well-established serotonin–norepinephrine reuptake inhibitor (SNRI) 
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antidepressant called Effexor,1 and the final group was given the new drug, Cheerup. Levels 
of depression were measured before and after two months on the various treatments, and 
ranged from 0 = as happy as a spring lamb to 20 = pass me the noose. The data are in the 
file Depression.csv.  

Load the data into a dataframe called depressionData by executing: 

depressionData<-read.csv("Depression.csv", header = TRUE) 

The variable treat contains strings representing the groups (e.g., Placebo to represent the 
placebo group). R will import this variable as a factor, but when it does it will order the levels 
of the factor alphabetically. Therefore, the order of factor levels for treat will be: Cheerup, 
Effexor, No Treatment, Placebo, Seroxat (Paxil). This is important to remember when 
entering the contrast codes. 

The design of this study is a two-way mixed design. There are two independent variables: 
treatment (no treatment, placebo, Seroxat, Effexor or Cheerup) and time (before or after 
treatment). Treatment is measured with different participants (and so is between-group) and 
time is, obviously, measured using the same participants (and so is repeated-measures). 
Hence, the ANOVA we want to use is a 5 × 2 two-way ANOVA. However, we also have a 
change score (diff) and because we haven’t got to mixed ANOVA yet in the book we’re just 
going to look at this change score, so the design reduces down to a one-way between group 
design: the treatment condition (treat) and the change in depressions cores (diff). 

Now, we want to do some contrasts. Imagine we have the following hypotheses: 
1. Any treatment will be better than no treatment. 
2. Drug treatments will be better than the placebo. 
3. Our new drug, Cheerup, will be better than old-style antidepressants. 
4. The old-style antidepressants will not differ in their effectiveness. 

We have to code these various hypotheses as we did in Chapter 10.  
The first contrast involves comparing the no-treatment condition to all other groups. 

Therefore, the first step is to chunk these variables, and then assign a positive weight to one 
chunk and a negative weight to the other chunk. 

Having done that, we need to assign a numeric value to the groups in each chunk. As I 
mentioned in Chapter 8, the easiest way to do this is just to assign a value equal to the 
number of groups in the opposite chunk. Therefore, the value for any group in chunk 1 will be 
the same as the number of groups in chunk 2 (in this case 4). Likewise, the value for any 
groups in chunk 2 will be the same as the number of groups in chunk 1 (in this case 1). So, 
we get the following codes: 

                                                        
1 SSRIs work selectively to inhibit the reuptake of the neurotransmitter serotonin in the brain, 

whereas SNRIs, which are newer act not only on serotonin but on another neurotransmitter (from the 
same family), norepinephrine. 

Chunk 1: 
No Treatment 

Chunk 2: 
Placebo 
Seroxat 
Effexor 

Cheerup 

Sign of Weight + − 
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The second contrast requires us to compare the placebo group to all of the drug groups. 
Again, we chunk our groups accordingly, assign one chunk a negative sign and the other a 
positive, and then assign a weight on the basis of the number of groups in the opposite 
chunk. We must also remember to give the no-treatment group a weight of 0 because they’re 
not involved in the contrast. 

 
The third contrast requires us to compare the new drug (Cheerup) to the old drugs (Seroxat 

and Effexor). Again, we chunk our groups accordingly, assign one chunk a negative sign and 
the other a positive, and then assign a weight on the basis of the number of groups in the 
opposite chunk. We must also remember to give the no-treatment and placebo groups a 
weight of 0 because they’re not involved in the contrast. 

 
The final contrast requires us to compare the two old drugs. Again, we chunk our groups 

accordingly, assign one chunk a negative sign and the other a positive, and then assign a 
weight on the basis of the number of groups in the opposite chunk. We must also give the no-
treatment, placebo and Cheerup groups a weight of 0 because they’re not involved in the 
contrast. 

Chunk 1: 
No Treatment 

Chunk 2: 
Placebo 
Seroxat 
Effexor 

Cheerup 

Sign of Weight + − 
 

Value of Weight +1 −4 

Chunk 1: 
Placebo 

Chunk 2: 
Seroxat 
Effexor 

Cheerup 

Sign of 
Weight 

+ − 
 

Value of Weight +1 −3 

Not Included 
No Treatment 

 

0 

Chunk 1: 
Cheerup 

Chunk 2: 
Seroxat 
Effexor 

Sign of 
Weight 

+ - 

Value of Weight +1 -2 

Not Included 
No Treatment 

Placebo 

0 
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We can summarize these codes in the following table: 

 
 No 

Treatment 
Placebo Seroxat Effexor Cheerup 

Contrast 1 −4 1 1 1 1 
Contrast 2 0 −3 1 1 1 
Contrast 3 0 0 1 1 −2 
Contrast 4 0 0 1 −1 0 

 
Remember however, that the levels of treat are actually ordered alphabetically (because of 
how R imported the data), so, we need to enter the codes in this order: 
 

 Cheerup Effexor No 
Treatment 

Placebo Seroxat 

Contrast 1 1 1 −4 1 1 
Contrast 2 1 1 0 −3 1 
Contrast 3 −2 1 0 0 1 
Contrast 4 0 −1 0 0 1 

 
These are the codes that we need to enter into R to do the contrasts that we’d like to do. 

To enter these contrasts we could create a variable for each contrast that contains the 
codes: 

contrast1<-c(1, 1, -4, 1, 1) 

contrast2<-c(1, 1, 0, -3, 1) 

contrast3<-c(-2, 1, 0, 0, 1) 

contrast4<-c(0, -1, 0, 0, 1) 

We can then apply the contrasts() function to the variable treat and use cbind() to  
concatenate these variables in different columns: 

contrasts(depressionData$treat)<-cbind(contrast1, contrast2, contrast3, contrast4) 

If we look at treat we can see that the appropriate contrast codes have been attached to the 
variable: 

 
attr(,"contrasts") 
                contrast1 contrast2 contrast3 contrast4 
Cheerup                 1         1        -2         0 
Effexor                 1         1         1        -1 
No Treatment           -4         0         0         0 
Placebo                 1        -3         0         0 
Seroxat (Paxil)         1         1         1         1 
Levels: Cheerup Effexor No Treatment Placebo Seroxat (Paxil) 

 
We can then run the ANOVA in the usual way by executing: 

depressionModel<-aov(diff~treat, data = depressionData) 

 

Chunk 1: 
Effexor 

Chunk 2: 
Seroxat 

 

Sign of 
Weight 

+ − 

Value of Weight +1 −1 

Not Included 
No Treatment 

Placebo 
Cheerup 

0 
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Output from the contrasts 
First we can look at the overall effect of treatment by executing: 

summary(depressionModel) 

The resulting output shows that treatment had a significant effect on the change in depression 
scores F(4, 45) = 4.42, p < .01:  

 
            Df Sum Sq Mean Sq F value   Pr(>F)    
treat        4  251.8  62.950  4.4213 0.004238 ** 
Residuals   45  640.7  14.238                     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 
We can plot a graph of this main effect by executing: 
 

bar <- ggplot(depressionData, aes(treat, diff)) 

bar + stat_summary(fun.y = mean, geom = "bar", fill = "White", colour = "Black") + 
stat_summary(fun.data = mean_cl_normal, geom = "pointrange") + labs(x = "Treatment", y 
= "Change in Depression Score") + scale_y_continuous(breaks=seq(-10,4, by = 2), limits 
= c(-10, 4)) 

Note that I’ve used the scale_y_continuous() to over-ride the defaults for the y-axis. 
Specifically, I have used the breaks option to specify the numbering along this axis: 
breaks=seq(−10, 4, by = 2) uses the seq() function to create a sequence of numbers from −10 
to 4 in steps of 2.The limits option sets the limits of the scale to be −10 and 4. The resulting 
graph is: 

 
It looks as though Cheerup creates the biggest decrease in depressions cores followed by the 
placebo and seroxat. The least effective treatment is the no-treatment condition (which shows 
a very small decline in depression levels). 

We can see the contrast estimates by executing: 

summary.lm(depressionModel) 
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Coefficients: 
               Estimate Std. Error t value Pr(>|t|)     
(Intercept)    -3.50000    0.53362  -6.559 4.61e-08 *** 
treatcontrast1 -0.80000    0.26681  -2.998  0.00441 **  
treatcontrast2  0.06667    0.34445   0.194  0.84740     
treatcontrast3  1.38333    0.48713   2.840  0.00675 **  
treatcontrast4 -0.65000    0.84374  -0.770  0.44510     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
 
Residual standard error: 3.773 on 45 degrees of freedom 
Multiple R-squared: 0.2821, Adjusted R-squared: 0.2183  
F-statistic: 4.421 on 4 and 45 DF,  p-value: 0.004238 

  
 

• treatcontrast1: This is our first contrast (no-treatment vs. the rest) and, as you can 
see, this is significant (p is below 0.05). This tells us that the change in depression 
levels in the no-treatment group was significantly different from the average change 
in all other groups, t = −2.998, p < .01. As you can see in the graph, there is little 
change in depression in the no-treatment group, but in all other groups there is a fall 
in depression. Therefore, this contrast reflects the fact that there is little change in the 
no-treatment group, but there is a decrease in depression levels in all other groups. 

• treatcontrast2: The second contrast (placebo vs. Seroxat, Effexor and Cheerup) is 
very non-significant, t = 0.194, p = .85. This shows that the decrease in depression 
levels seen in the placebo group is comparable to the average decrease in 
depression levels seen in the Seroxat, Effexor and Cheerup conditions. In other 
words, the combined effect of the drugs on depression is no better than a placebo. 

• treatcontrast3: The third contrast (Cheerup vs. Effexor and Seroxat), is highly 
significant, t = 2.84, p < .01. This shows that the decrease in depression levels seen 
in the Cheerup group is significantly bigger than the decrease seen in the Effexor and 
Seroxat groups combined. Put another way, Cheerup has a significantly bigger effect 
than other established antidepressants. 

• treatcontrast4: Our last contrast (Seroxat vs. Effexor) is very non-significant, t = 
−0.77, p = 0.45. This tells us that the decrease in depression levels seen in the 
Seroxat group is comparable to the decrease in depression levels seen in the Effexor 
group. Put another way, Effexor and Seroxat seem to have similar effects on 
depression. 

Please Sir, can I have some more … simple effects?  

Calculating Simple Effects 
A simple main effect (usually called a simple effect) is just the effect of one 
variable at levels of another variable. Chapter 12 gives an example in which 
we measured the attractiveness of dates after no alcohol, 2 pints and 4 pints in 
both men and women. Therefore, we have two independent variables: alcohol 

(none, 2 pints, 4 pints) and gender (male and female). One simple effects analysis 
we could do would be to look at the effect of gender (i.e. compare male and female scores) at 
the three levels of alcohol. Let’s look how we’d do this. We’re partitioning the model sum of 
squares, and we saw in Chapter 10 that we calculate model sums of squares using this 
equation: 

  

For simple effects, we calculate the model sum of squares for the effect of gender at each 
level of alcohol. So, we’d begin with when there was no alcohol, and calculate the model sum 
of squares. Thus the grand mean becomes the mean for when there was no alcohol, and the 
group means are the means for men (when there was no alcohol) and women (when there 
was no alcohol). So, we group the data by the amount of alcohol drunk. Within each of these 
three groups, we calculate the overall mean and also the mean of the male and female 
scores separately. These mean scores are all we really need. Pictorially, you can think of the 
data as displayed pictorially below. 
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We can then apply the same equation for the model sum of squares that we used for the 
overall model sum of squares, but we use the grand mean of the no-alcohol data (63.75) and 
the means of males (66.875) and females (60.625) within this group: 
 

No Alcohol  2 Pints  4 Pints 
Female Male  Female Male  Female Male 

65 50  70 45  55 30 
70 55  65 60  65 30 
60 80  60 85  70 30 
60 65  70 65  55 55 
60 70  65 70  55 35 
55 75  60 70  60 20 
60 75  60 80  50 45 
55 65  50 60  50 40 

60.625 66.875  62.50 66.875  57.500 35.625 
Mean None = 

63.75  Mean 2 Pints = 
64.6875  Mean 4 Pints = 

46.5625 

 

 

The degrees of freedom for this effect are calculated the same way as for any model sum of 
squares ; that is, they are one less than the number of conditions being compared (k – 1), 
which in this case when we’re comparing only two conditions will be 1. 

The next step is to do the same but for the 2-pints data. Now we use the grand mean of the 
2-pints data (64.6875) and the means of males (66.875) and females (62.50) within this 
group. The equation, however, stays the same: 

 

The degrees of freedom are the same as in the previous simple effect, namely k – 1, which is 
1 for these data.  
The next step is to do the same but for the 4-pints data. Now we use the grand mean of the 4-
pints data (46.5625) and the means of females (57.500) and males (35.625) within this group. 
The equation, however, stays the same: 

 

Again, the degrees of freedom are 1 (because we’ve compared two groups).  
As with any ANOVA, we need to convert these sums of squares to mean squares by 

dividing by the degrees of freedom. However, because all of these sums of squares have 1 
degree of freedom, so we’re dividing by 1, the mean squares will be the same as the sum of 
squares. So, the final stage is to calculate an F-ratio for each simple effect. As ever, the F-
ratio is just the mean squares for the model divided by the residual mean squares. So, you 
might well ask, what do we use for the residual mean squares? When conducting simple 
effects we use the residual mean squares for the original ANOVA (the residual mean squares 
for the entire model). In doing so we are merely partitioning the model sums of squares and 
so keep control of the Type I error rate. For these data, the residual sum of squares was 
83.036 (see section 10.2.6). Therefore, we get: 
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We can evaluate these F-values in the usual way (they will have 1 and 42 degrees of freedom 
for these data). However, for the 2-pints data we can be sure there is not a significant effect 
of gender because the F-ratio is less than 1. 

We can also convert them to t-values (to compare against the output from R) by 
remembering that F is simply the square root of t. Therefore: 

𝑡Gender No Alcohol=1.88=1.37 
𝑡Gender 2 Pints=0.92=0.96 

𝑡Gender (4 Pints)=23.05=4.80 

  

Please Sir, can I have some more … robust methods?  

Robust three –way independent ANOVA 
Smart Alex’s Task 5 involves a three-way ANOVA: hospitals were reporting 

an increase in injuries related to playing Nintendo Wii 
(http://www.telegraph.co.uk/news/uknews/1576244/Spate-of-injuries-blamed-

on-Nintendo-Wii.html). These injuries were attributed mainly to muscle and 
tendon strains. A researcher was interested to see whether these injuries could be 

prevented. She hypothesized that a stretching warm-up before playing Wii would help lower 
injuries, and that athletes would be less susceptible to injuries because their regular activity 
should make them more flexible. She took 60 athletes and 60 non-athletes (athlete), half of 
them played Wii and half watched others playing as a control (wii), and within these groups 
half did a 5-minute stretch routine before playing/watching whereas the other half did not 
(stretch). The outcome was a pain score out of 10 (where 0 is no pain, and 10 is severe pain) 
after playing for 4 hours (injury). The data are in the file Wii.dat. Conduct a three-way 
ANOVA to test whether athletes are less prone to injury, and whether the prevention 
programme worked. 

Some graphs and how to obtain them in R are in the answers to the Smart Alex task, and 
you should also consult this section to see how the non-robust ANOVA was run, and how to 
interpret the results and so on. 

This example is a three-way ANOVA because there are three independent variables 
(athlete, stretch and wii) each with two levels. The only function for conducting a three-way 
robust ANOVA where groups are independent is t3way(), which performs a three-way 
independent ANOVA on trimmed means. To access this function we need to load the WRS 
package (see the chapter). 

The first problem we have is that, as with the functions discussed in the book chapter, this 
function needs the data to be in wide format rather than long (see Chapter 3). Essentially we 
want levels of our three factors to be represented in different columns. Therefore, rather than 
a dataframe with 4 columns and 120 rows, we want one with 8 columns and 15 rows. 

Like the example in the chapter, we can use melt() and cast() to do the restructuring for us. 
To get the restructuring to work, we need to add a  variable to our dataframe that identifies 
the rows in the wide format. The easiest approach is to create a variable (called row) that 
identifies within each of the eight groups (made up of the combination of the three variables) 
the row number of a given score. In other words, it will be a value from 1 to 20 telling us 
whether the score is the first, second, third etc. score within the chunk. We can add this 
variable to the dataframe by executing: 
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athleteData$row<-rep(1:15, 8) 

This command uses the rep() function to create a variable row in the dataframe athleteData, 
that is, the numbers 1 to 15 repeated eight times (rep(1:15, 8)). The dataframe now looks like 
this (edited): 
 
        athlete       stretch          wii injury row 
1       Athlete    Stretching  Playing Wii      2   1 
2       Athlete    Stretching  Playing Wii      2   2 
3       Athlete    Stretching  Playing Wii      1   3 
4       Athlete    Stretching  Playing Wii      2   4 
5       Athlete    Stretching  Playing Wii      0   5 
6       Athlete    Stretching  Playing Wii      1   6 
7       Athlete    Stretching  Playing Wii      2   7 
8       Athlete    Stretching  Playing Wii      0   8 
9       Athlete    Stretching  Playing Wii      2   9 
10      Athlete    Stretching  Playing Wii      2  10 
11      Athlete    Stretching  Playing Wii      2  11 
12      Athlete    Stretching  Playing Wii      1  12 
13      Athlete    Stretching  Playing Wii      4  13 
14      Athlete    Stretching  Playing Wii      2  14 
15      Athlete    Stretching  Playing Wii      2  15 
16      Athlete    Stretching Watching Wii      0   1 
17      Athlete    Stretching Watching Wii      0   2 
18      Athlete    Stretching Watching Wii      3   3 
19      Athlete    Stretching Watching Wii      3   4 
20      Athlete    Stretching Watching Wii      3   5 
21      Athlete    Stretching Watching Wii      2   6 
22      Athlete    Stretching Watching Wii      1   7 
23      Athlete    Stretching Watching Wii      0   8 
24      Athlete    Stretching Watching Wii      2   9 
25      Athlete    Stretching Watching Wii      2  10 
26      Athlete    Stretching Watching Wii      3  11 
27      Athlete    Stretching Watching Wii      2  12 
28      Athlete    Stretching Watching Wii      2  13 
29      Athlete    Stretching Watching Wii      3  14 
30      Athlete    Stretching Watching Wii      1  15 
31      Athlete No Stretching  Playing Wii      2   1 
32      Athlete No Stretching  Playing Wii      4   2 
33      Athlete No Stretching  Playing Wii      1   3 
34      Athlete No Stretching  Playing Wii      2   4 
35      Athlete No Stretching  Playing Wii      2   5 
36      Athlete No Stretching  Playing Wii      2   6 
37      Athlete No Stretching  Playing Wii      1   7 
38      Athlete No Stretching  Playing Wii      4   8 
39      Athlete No Stretching  Playing Wii      4   9 
40      Athlete No Stretching  Playing Wii      1  10 
41      Athlete No Stretching  Playing Wii      2  11 
42      Athlete No Stretching  Playing Wii      3  12 
43      Athlete No Stretching  Playing Wii      3  13 
44      Athlete No Stretching  Playing Wii      3  14 
45      Athlete No Stretching  Playing Wii      3  15 
46      Athlete No Stretching Watching Wii      2   1 
47      Athlete No Stretching Watching Wii      3   2 
48      Athlete No Stretching Watching Wii      2   3 
49      Athlete No Stretching Watching Wii      2   4 
50      Athlete No Stretching Watching Wii      2   5 
51      Athlete No Stretching Watching Wii      1   6 
52      Athlete No Stretching Watching Wii      0   7 
53      Athlete No Stretching Watching Wii      3   8 
54      Athlete No Stretching Watching Wii      3   9 
55      Athlete No Stretching Watching Wii      2  10 
56      Athlete No Stretching Watching Wii      1  11 
57      Athlete No Stretching Watching Wii      2  12 
58      Athlete No Stretching Watching Wii      4  13 
59      Athlete No Stretching Watching Wii      1  14 
60      Athlete No Stretching Watching Wii      2  15 
61  Non-Athlete    Stretching  Playing Wii      5   1 
62  Non-Athlete    Stretching  Playing Wii      5   2 
63  Non-Athlete    Stretching  Playing Wii      3   3 
64  Non-Athlete    Stretching  Playing Wii      6   4 
65  Non-Athlete    Stretching  Playing Wii      4   5 
66  Non-Athlete    Stretching  Playing Wii      3   6 
67  Non-Athlete    Stretching  Playing Wii      4   7 
68  Non-Athlete    Stretching  Playing Wii      5   8 
69  Non-Athlete    Stretching  Playing Wii      5   9 
70  Non-Athlete    Stretching  Playing Wii      2  10 
71  Non-Athlete    Stretching  Playing Wii      6  11 
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72  Non-Athlete    Stretching  Playing Wii      4  12 
73  Non-Athlete    Stretching  Playing Wii      4  13 
74  Non-Athlete    Stretching  Playing Wii      4  14 
75  Non-Athlete    Stretching  Playing Wii      3  15 
76  Non-Athlete    Stretching Watching Wii      4   1 
77  Non-Athlete    Stretching Watching Wii      3   2 
78  Non-Athlete    Stretching Watching Wii      2   3 
79  Non-Athlete    Stretching Watching Wii      1   4 
80  Non-Athlete    Stretching Watching Wii      4   5 
81  Non-Athlete    Stretching Watching Wii      3   6 
82  Non-Athlete    Stretching Watching Wii      2   7 
83  Non-Athlete    Stretching Watching Wii      2   8 
84  Non-Athlete    Stretching Watching Wii      1   9 
85  Non-Athlete    Stretching Watching Wii      3  10 
86  Non-Athlete    Stretching Watching Wii      1  11 
87  Non-Athlete    Stretching Watching Wii      1  12 
88  Non-Athlete    Stretching Watching Wii      3  13 
89  Non-Athlete    Stretching Watching Wii      4  14 
90  Non-Athlete    Stretching Watching Wii      2  15 
91  Non-Athlete No Stretching  Playing Wii      7   1 
92  Non-Athlete No Stretching  Playing Wii      8   2 
93  Non-Athlete No Stretching  Playing Wii      6   3 
94  Non-Athlete No Stretching  Playing Wii      9   4 
95  Non-Athlete No Stretching  Playing Wii      4   5 
96  Non-Athlete No Stretching  Playing Wii      7   6 
97  Non-Athlete No Stretching  Playing Wii      5   7 
98  Non-Athlete No Stretching  Playing Wii      9   8 
99  Non-Athlete No Stretching  Playing Wii      6   9 
100 Non-Athlete No Stretching  Playing Wii      4  10 
101 Non-Athlete No Stretching  Playing Wii      8  11 
102 Non-Athlete No Stretching  Playing Wii      5  12 
103 Non-Athlete No Stretching  Playing Wii      4  13 
104 Non-Athlete No Stretching  Playing Wii      7  14 
105 Non-Athlete No Stretching  Playing Wii     10  15 
106 Non-Athlete No Stretching Watching Wii      1   1 
107 Non-Athlete No Stretching Watching Wii      3   2 
108 Non-Athlete No Stretching Watching Wii      2   3 
109 Non-Athlete No Stretching Watching Wii      1   4 
110 Non-Athlete No Stretching Watching Wii      3   5 
111 Non-Athlete No Stretching Watching Wii      3   6 
112 Non-Athlete No Stretching Watching Wii      2   7 
113 Non-Athlete No Stretching Watching Wii      3   8 
114 Non-Athlete No Stretching Watching Wii      4   9 
115 Non-Athlete No Stretching Watching Wii      2  10 
116 Non-Athlete No Stretching Watching Wii      0  11 
117 Non-Athlete No Stretching Watching Wii      1  12 
118 Non-Athlete No Stretching Watching Wii      3  13 
119 Non-Athlete No Stretching Watching Wii      2  14 
120 Non-Athlete No Stretching Watching Wii      0  15 
 
Note that the structure is the same as before, it’s just that we have a new variable called row 
that identifies the scores within each combination of athlete, stretch and wii as a value from 
1 to 15. 

Now that we have changed the data set, we need to make it molten so that we can cast the 
data into the wide format. To do this we use the melt() function. We need to differentiate 
variables that identify attributes of the scores (in this case, athlete, stretch, wii, and row) 
from the scores or measured variables themselves (in this case injury). Attributes are 
specified with the id option, and scores with the measured option. Therefore, we can create a 
molten dataframe called athleteMelt by executing: 

athleteMelt<-melt(athleteData, id = c("row", "athlete", "stretch", "wii"), measured = 
c( "injury")) 

Having melted the data we want to cast it in the wide format using cast(). To do this we use 
a formula in the form: variables specifying the rows ~ variables specifying the columns. In this 
case, row tells us in which row to place a score, and we want the athlete, stretch and wii 
variables split across different columns, so we’d use the formula: row ~ athlete + stretch + wii. 
Therefore, we can make a wide dataframe called athleteWide by executing: 

athleteWide<-cast(athleteMelt,  row ~ athlete + stretch + wii) 

Note that we have applied this command to the molten data set (athleteMelt). The result is 
that the data have been transformed from the long format to the wide format. However, 
because we added the variable row to the data frame, our new dataframe also contains this 
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variable, and for the analysis we want only the independent variables, therefore, we want to 
remove row. We can do this by executing: 

athleteWide$row<-NULL 

which basically zaps the variable row into oblivion. If you look at the dataframe you’ll see a 
lovely wide format set of data: 

 
Athlete Athlete Non-Athlete 

Stretch No Stretch Stretch No Stretch Stretch 

Wii Play Watch Play Watch Play Watch Play Watch 
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It’s important to note the order of the columns because this affects how we specify the 

robust analysis. In this case, the hierarchy of the independent variables is athlete followed by 
stretrch followed by wii. We would say that athlete is factor A, stretch is factor B and wii is 
factor C. As such, the order of the columns reflects a 2 × 2 × 2 design (two levels of athlete 
divided up into two levels of stretching, divided into two levels of Wii activity). 

The function t3way() takes the general form: 

t3way(levels of factor A, levels of factor B, levels of factor C, data, tr = .2, alpha 
= .05) 

As with other functions we’ve encountered, the level of trimming is by default 20% (tr = .2), 
but can be changed by including the tr = option. Also, the default alpha level is .05 but can be 
changed by including the alpha = option. Assuming we are happy with the default level of 
trimming, we need only specify the dataframe (athleteWide) and the levels of factor A (2 in 
this case, as explained above), factor B (2 in this case) and factor C (again 2). Therefore, we 
can do a robust three-way factorial ANOVA based on trimmed means by executing: 

t3way(2,2,2, athleteWide)  

The output of this command is shown below. We are given a test statistic for factor A ($Qa), 
factor B ($Qb), and factor C ($Qc) and all of their interactions ($Qab) as well as the 
corresponding p-value ($A.p.value, $B.p.value, and $C.p.value etc.). If the p-value is less 
than .05 then we say the effect was significant. 

 
$Qa 
[1] 44.17362 
 
$Qa.crit 
[1] 4.037312 
 
$A.p.value 
[1] 1e-04 
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$Qb 
[1] 6.956038 
 
$Qb.crit 
[1] 4.037312 
 
$B.p.value 
[1] 0.012 
 
$Qc 
[1] 38.74235 
 
$Qc.crit 
[1] 12.17617 
 
$C.p.value 
[1] 0.001 
 
$Qab 
[1] 1.880913 
 
$Qab.crit 
[1] 1.876811 
 
$AB.p.value 
[1] 0.177 
 
$Qac 
[1] 33.66722 
 
$Qac.crit 
[1] 12.17617 
 
$AC.p.value 
[1] 0.001 
 
$Qbc 
[1] 9.360045 
 
$Qbc.crit 
[1] 9.093685 
 
$BC.p.value 
[1] 0.004 
 
$Qabc 
[1] 3.216472 
 
$Qabc.crit 
[1] 3.196099 
 
$ABC.p.value 
[1] 0.08 

 
Remember that factor A was athlete, factor B stretch and factor C wii. We could tabulate 
these effects as follows (which makes them a little easier to understand). To sum up, all of the 
main effects are significant, and the athlete × wii and stretch × wii interactions also. Most 
important, the three-way interaction is not significant (which differs from what you should find 
when you run the non-robust ANOVA). Compare these results with the answers to smart 
Alex’s task, and also see there for how to interpret the significant effects. 

 
Effect Label Value Critical Value p-value Significant? 
Athlete $Qa 44.17362 4.037312 1e-04 Y 
Stretch $Qb 6.956038 4.037312 0.012 Y 
Wii $Qc 38.74235 12.17617 0.001 Y 
Athlete × Stretch $Qab 1.880913 1.876811 0.177 N 
Athlete × Wii $Qac 33.66722 12.17617 0.001 Y 
Stretch × Wii $Qbc 9.360045 9.093685 0.004 Y 
Athlete × Stretch × 
Wii 

$Qabc 3.216472 3.196099 0.08 N 
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There is not a specific procedure for post hoc tests in three-way robust ANOVA. However, if 

the three-way interaction is significant you could split the data by one of the independent 
variables and run separate two-way robust ANOVAs. For example, here we might run 
separate stretch × wii ANOVAs for athletes and non-athletes. Having done this, you can use 
the post hoc procedures described in the book chapter. 

Labcoat Leni’s real research 

Don’t forget your toothbrush?  

Davey, G. C. L., et al. (2003). Journal of Behavior Therapy & Experimental Psychiatry, 34, 
141–160. 

 
We have all experienced that feeling after we have left the house of 
wondering whether we locked the door, or closed the window, or whether we 

remembered to remove the bodies from the fridge in case the police turn 
up. This behaviour is normal; however, people with obsessive compulsive 
disorder (OCD) tend to check things excessively. They might, for example, 
check whether they have locked the door so often that it takes them an 
hour to leave their house. It is a very debilitating problem. 
One theory of this checking behaviour in OCD suggests that it is caused by 

a combination of the mood you are in (positive or negative) interacting with the rules you use 
to decide when to stop a task (do you continue until you feel like stopping, or until you have 
done the task as best as you can?). Davey, Startup, Zara, MacDonald, and Field (2003) 
tested this hypothesis by inducing a negative, positive or no mood in different people and 
then asking them to imagine that they were going on holiday and to generate as many things 
as they could that they should check before they went away. Within each mood group, half of 
the participants were instructed to generate as many items as they could (known as an ‘as 
many as can’ stop rule), whereas the remainder were asked to generate items for as long as 
they felt like continuing the task (known as a ‘feel like continuing’ stop rule). The data are in 
the file Davey2003.dat. 

Davey et al. hypothesized that people in negative moods, using an ‘as many as can’ stop 
rule, would generate more items than those using a ‘feel like continuing’ stop rule. 
Conversely, people in a positive mood would generate more items when using a ‘feel like 
continuing’ stop rule compared to an ‘as many as can’ stop rule. Finally, in neutral moods, the 
stop rule used shouldn’t affect the number of items generated. Draw an error bar chart of the 
data and then conduct the appropriate analysis to test Davey et al.’s hypotheses. 

 

Solution 
First of all load in the data (presuming that you have set your working directory to be the 
location of the Davey2003.dat file): 

 
daveyData<-read.delim("Davey2003.dat", header = TRUE) 
 
Next, we should set the variables Mood and Stop_Rule to be factors: 

 
daveyData$Mood<-factor(daveyData$Mood, levels = c(1:3), labels = c("Negative", 

"Positive", "Neutral")) 
 
daveyData$Stop_Rule<-factor(daveyData$Stop_Rule, levels = c(1:2), labels = c("As many 
as you can", "Feel like continuing")) 
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Next we can draw the error bar graph with different colours to represent different stop rules: 
bar <- ggplot(daveyData, aes(Mood, Checks, fill = Stop_Rule)) 
bar + stat_summary(fun.y = mean, geom = "bar", position="dodge") + 
stat_summary(fun.data = mean_cl_normal, geom = "errorbar", 
position=position_dodge(width=0.90), width = 0.2) + labs(x = "Mood Induction", y = 
"Mean Quantity of Items Checked", fill = "Stop Rule")  
 
The resulting graph should look like this: 

 
To get some descriptive statistics of the interaction between Mood and Stop_Rule, we can 

execute: 
 
by(daveyData$Checks, list(daveyData$Stop_Rule, daveyData$Mood), stat.desc) 
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:As many as you can 
:Negative 
     median     mean       SE.mean   CI.mean.0.95  var         std.dev     coef.var  
    12.0000000 12.6000000  1.9043809 4.3080089     36.2666667  6.0221812   0.4779509  
--------------------------------------------------------------------------------------  
:Feel like continuing 
:Negative 
     median     mean      SE.mean    CI.mean.0.95   var        std.dev   coef.var  
     8.5000000  9.2000000 1.2631530  2.8574507    15.9555556  3.9944406  0.4341783  
--------------------------------------------------------------------------------------  
:As many as you can 
:Positive 
     median     mean      SE.mean    CI.mean.0.95  var        std.dev    coef.var  
     7.0000000  7.0000000 0.9428090  2.1327822     8.8888889  2.9814240  0.4259177  
--------------------------------------------------------------------------------------  
:Feel like continuing 
:Positive 
    median     mean       SE.mean   CI.mean.0.95  var         std.dev    coef.var  
    12.0000000 14.8000000 2.4846194 5.6205995     61.7333333  7.8570563  0.5308822  
--------------------------------------------------------------------------------------  
:As many as you can 
:Neutral 
    median    mean        SE.mean   CI.mean.0.95  var        std.dev    coef.var  
    9.5000000 8.7000000   0.7461010 1.6877977     5.5666667  2.3593784  0.2711929  
--------------------------------------------------------------------------------------  
:Feel like continuing 
:Neutral 
    median    mean      SE.mean     CI.mean.0.95  var         std.dev   coef.var  
   9.0000000  9.9000000 1.4640128   3.3118269     21.4333333  4.6296148  0.4676379  
 
In the resulting (edited) output above, we can see that in the ‘as many as you can’ condition, 
people induced with a negative mood typically checked around 13 items, people induced with 
a positive mood typically checked around 7 items, and those induced with a neutral mood 
checked around 9 items. In the ‘feel like continuing’ condition, people induced with a negative 
mood typically checked around 9 items, people induced with a positive mood typically 
checked around 15 items, and those induced with a neutral mood checked around  10 items. 

The final thing to do at this stage is to compute Levene’s test to see whether the variances 
differ across all six groups (not just the two stop rule groups and three mood groups). To do 
this we can add the interaction() option to the Levene’s test function, which will compute 
Levene’s test across any combination of groups for the variables specified within interaction(): 

 
leveneTest(daveyData$Checks, interaction(daveyData$Mood, daveyData$Stop_Rule), center 

= median) 
 

Levene's Test for Homogeneity of Variance (center = median) 
        Df   F value    Pr(>F) 
group   5    1.7291     0.1436 
       54              
Levene’s test is non-significant, indicating that there is no problem with homogeneity of 
variance.  

Now we can do the factorial ANOVA. Remember to set some orthogonal contrasts, 
otherwise the Type III sums of squares will not compute properly. It makes sense for the first 
mood contrast to compare a neutral mood (the control condition) against both positive and 
negative moods; then, in the second mood contrast, we could compare positive mood with 
negative mood. With regard to stop rule, there are only two levels and so we can only set one 
contrast to compare ‘as many as you can’ with ‘feel like continuing’: 

 
contrasts(daveyData$Mood)<-cbind(c(1, 1, -2), c(-1, 1, 0)) 
contrasts(daveyData$Stop_Rule)<-c(-1, 1) 
daveyModel<-aov(Checks ~ Stop_Rule+Mood + Stop_Rule:Mood, data = daveyData) 
Anova(daveyModel, type="III") 
 

Anova Table (Type III tests) 
 
Response: Checks 
               Sum Sq Df  F value    Pr(>F)     
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(Intercept)    6448.1  1 258.1904 < 2.2e-16 *** 
Stop_Rule        52.3  1   2.0928  0.153771     
Mood             34.1  2   0.6834  0.509222     
Stop_Rule:Mood  316.9  2   6.3452  0.003349 **  
Residuals      1348.6 54    

 
NB: If you get a different set of results than me, make sure that you have set some 
orthogonal contrasts. Even if you think setting contrasts is pointless (i.e. all your variables 
have only two levels) you still need to set some orthogonal contrasts before running the 
ANOVA for the Type III sums of squares to compute properly. 

The main effect of mood was not significant, F(2, 54) = 0.68, p > .05, indicating that the 
number of checks (when we ignore the stop rule adopted) was roughly the same regardless 
of whether the person was in a positive, negative or neutral mood. Similarly, the main effect of 
stop rule was not significant, F(1, 54) = 2.09, p > .05, indicating that the number of checks 
(when we ignore the mood induced) was roughly the same regardless of whether the person 
used an ‘as many as can’ or a ‘feel like continuing’ stop rule. The mood × stop rule interaction 
was significant, F(2, 54) = 6.35, p < .01, indicating that the mood combined with the stop rule 
affected checking behaviour. Looking at the graph, a negative mood in combination with an 
‘as many as can’ stop rule increased checking as did the combination of a ‘feel like 
continuing’ stop rule and a positive mood, just as Davey et al. predicted. 

To view the output of the orthogonal contrasts that we set earlier execute: 
 
summary.lm(daveyModel) 
 
Coefficients: 
                   Estimate Std. Error t value Pr(>|t|)     
(Intercept)       1.037e+01  6.452e-01  16.068  < 2e-16 *** 
Stop_Rule1        9.333e-01  6.452e-01   1.447 0.153771     
Mood1             5.333e-01  4.562e-01   1.169 0.247506     
Mood2            -1.597e-16  7.902e-01   0.000 1.000000     
Stop_Rule1:Mood1  1.667e-01  4.562e-01   0.365 0.716286     
Stop_Rule1:Mood2 -2.800e+00  7.902e-01  -3.544 0.000823 *** 
 

• Stop_Rule1: This is the contrast for the main effect of stop rule; because stop rule 
has only two groups, this is the same as the effect of Stop_Rule from the ANOVA 
output. 

• Mood1: This contrast compares the neutral mood group to the positive and negative 
mood groups. This tests whether the mean of the neutral mood group is different from 
the mean of the positive and negative mood groups combined. The p-value is .25, 
which is larger than .05, indicating a non-significant difference. So we could conclude 
that the effect of positive or negative mood induction on the number of checks a 
person makes before leaving the house is not significantly different from the effect of 
neutral mood induction on the number of checks.  

• Mood2: This contrast tests whether the mean of the positive mood group is different 
from the mean of the negative mood group. The p-value is 1, which is larger than .05, 
and therefore indicates a non-significant difference between the groups. We can 
conclude that a positive mood induction vs. a negative mood induction did not 
significantly affect the number of checks generated.   

• Stop_Rule1:Mood1: This contrast tests whether the effect of Mood1 described above 
is different in the different stop rule groups, ‘as many as can’ and ‘feel like continuing’. 
It answers the question: is the combined effect of positive and negative mood 
induction, compared to neutral mood induction, on the number of checks generated 
comparable in the two stop rule groups? The p-value is .72, which is non-significant, 
so the answer is ‘yes, the extent to which positive and negative mood induction vs. 
neutral mood induction has an effect on number of checks is similar in the two stop 
rule groups’. 

• Stop_Rule1:Mood2: This contrast tests whether the effect of Mood2 described above 
is different in the two stop rule groups. It answers the question: is the effect of 
positive mood induction, compared to negative mood induction, on the number of 
checks comparable when participants are asked to generate as many items as they 
could (‘as many as can’ stop rule) to when they are asked to generate items for as 
long as they felt like continuing the task ( ‘feel like continuing’ stop rule). The p-value 
is less than .001, which is significant, so the answer is ‘no, the extent to which 
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positive and negative mood induction has an effect on the number of checks is 
different in the two stop rule groups’. We can see from the graph above that people in 
negative moods, using an ‘as many as can’ stop rule, generated more items than 
those using a ‘feel like continuing’ stop rule. Conversely, people in a positive mood 
generated more items when using a ‘feel like continuing’ stop rule compared to an ‘as 
many as can’ stop rule. This again is in line with what Davey et al. predicted. 

The aov() function automatically generates some plots that we can use to test the 
assumptions. We can see these graphs by executing: 

 
plot(daveyModel) 

 
The first graph below (on the left) can be used for testing homogeneity of variance: if it has a 
funnel shape then we’re in trouble. The plot we have does show funnelling, which implies that 
the residuals might be heteroscedastic. The second plot is a Q-Q plot, which tells about the 
normality of residuals in the model. We want our residuals to be normally distributed, which 
means that the dots on the graph should hover around the diagonal line. On ours, there is 
only some deviation from the line, suggesting that we can assume normality of our 
residuals/errors.  

 

 
 

Smart Alex’s solutions 

Task 1 

• People’s musical tastes change as they get older (my parents, for example, after 
years of listening to relatively cool music when I was a kid, subsequently hit their mid-
forties and developed a worrying obsession with country and western music). This 
worries me immensely because the future seems bleak if it is spent listening to Garth 
Brooks and thinking ‘oh boy, did I underestimate Garth’s immense talent when I was 
in my 20s’. So, I did some imaginary research to find out whether my fate really was 
sealed, or whether it’s possible to be old and like good music too. First, I got two 
groups of people (45 people in each group): one group contained young people 
(which I arbitrarily decided was under 40 years of age) and the other group contained 
more mature individuals (above 40 years of age). This is my first independent 
variable, age. I then split each of these groups of 45 into three smaller groups of 15 
and assigned them to listen to Fugazi (who everyone knows are the coolest band on 
the planet),  ABBA or Barf Grooks (a less well-known country and western musician 
not to be confused with anyone real who produces music that makes me want to 
barf). This is my second independent variable, music. After listening to the music I 
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got each person to rate it on a scale ranging from −100 (please poke a pencil through 
my eardrum so I don’t have to listen any more) through 0 (I am completely indifferent) 
to +100 (I love this music so much, it gives me a tingle down my spine). This variable 
is called liking. The data are in the file fugazi.dat. Conduct a two-way independent 
ANOVA on them. 

Read in the data: 
fugaziData<-read.delim("fugazi.dat", header = TRUE) 
 

Set music and age to be factors: 
fugaziData$music<-factor(fugaziData$music, levels = c(1:3), labels = c("Fugazi", 
"Abba", "Barf Grooks")) 
 
fugaziData$age<-factor(fugaziData$age, levels = c(1:2), labels = c("40+", "0-40")) 
 

Now produce an error bar graph: 
bar <- ggplot(fugaziData, aes(music, liking, fill = age)) 
bar + stat_summary(fun.y = mean, geom = "bar", position="dodge") + 
stat_summary(fun.data = mean_cl_normal, geom = "errorbar", 
position=position_dodge(width=0.90), width = 0.2) + labs(x = "Music", y = "Mean 
Liking Rating", fill = "Age Group")  

 
The error bar chart of the music data shows the mean rating of the music played to each 
group. It’s clear from this chart that when people listened to Fugazi the two age groups were 
divided: the older ages rated it very low, but the younger people rated it very highly. A reverse 
trend is found if you look at the ratings for Barf Grooks: the youngsters give it low ratings 
while the wrinkly ones love it. For ABBA the groups agreed: both old and young rated them 
highly. 

We can produce some descriptive statistics: 
 

by(fugaziData$liking, list(fugaziData$age, fugaziData$music), stat.desc) 
 

: 40+ 
: Fugazi 
mean          SE.mean    CI.mean.0.95    var        std.dev      coef.var 
-75.8666667   3.7108165  7.9589097     206.5523810  14.3719303   -0.1894367  
--------------------------------------------------------------------------------------  
: 0-40 
: Fugazi 
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 mean      SE.mean    CI.mean.0.95    var        std.dev     coef.var  
66.2000000 5.1392051  11.0224986    396.1714286  19.9040556  0.3006655  
--------------------------------------------------------------------------------------  
: 40+ 
: Abba 
 mean      SE.mean    CI.mean.0.95  var         std.dev     coef.var  
59.9333333 5.1597957  11.0666612   399.3523810  19.9838030  0.3334339  
--------------------------------------------------------------------------------------  
: 0-40 
: Abba 
 mean      SE.mean      CI.mean.0.95  var           std.dev     coef.var  
64.1333333    4.3881514  9.4116488    288.8380952   16.9952374  0.2649985  
--------------------------------------------------------------------------------------  
: 40+ 
: Barf Grooks 
mean       SE.mean    CI.mean.0.95  var          std.dev     coef.var 
74.2666667 5.7565422  12.3465550    497.0666667  22.2949920  0.3002019  
--------------------------------------------------------------------------------------  
: 0-40 
: Barf Grooks 
mean        SE.mean   CI.mean.0.95  var          std.dev     coef.var 
-71.4666667 5.9847956 12.8361098    537.2666667  23.1790135  -0.3243332  

 
The above (edited) descriptive statistics output will be useful for interpreting the significant 
effects later on. 

We want to do Levene's test: 
 
leveneTest(fugaziData$liking, interaction(fugaziData$music, fugaziData$age), 
center = median) 

 
The following output shows the result. For these data the significance value is 0.383, which is 
greater than the criterion of .05. This means that the variances in the different experimental 
groups are roughly equal (i.e. not significantly different), and that the assumption has been 
met.  
 
Levene's Test for Homogeneity of Variance (center = median) 
      Df F value Pr(>F) 
group  5  1.0707 0.3825 
      84                

 
Next we can conduct the two-way ANOVA. Remember that for the Type III sums of squares 

to work, we have to set orthogonal contrasts. I am going to set the first music contrast to 
compare ABBA with both Fugazi and Barf Grooks, and the second music contrast to 
compare Fugazi with Barf Grooks. For age there are only two levels (0–40 and 40+) and so I 
will set the age contrast to compare these two age groups.  

 
contrasts(fugaziData$music)<-cbind(c(1, -2, 1), c(1, 0, -1)) 
contrasts(fugaziData$age)<-c(-1, 1) 
fugaziModel<-aov(liking ~ music*age, data = fugaziData) 
Anova(fugaziModel, type="III") 
 
Anova Table (Type III tests) 
 
Response: liking 
            Sum Sq Df  F value    Pr(>F)     
(Intercept)  34340  1  88.6089 8.744e-15 *** 
music        81864  2 105.6198 < 2.2e-16 *** 
age              1  1   0.0018    0.9659     
music:age   310790  2 400.9769 < 2.2e-16 *** 

Residuals    32553 84           
NB: If you get a different set of results than me, make sure that you have set some 
orthogonal contrasts. Even if you think setting contrasts is pointless (i.e. all your variables 
have only two levels) you still need to set some orthogonal contrasts before running the 
ANOVA for the Type III sums of squares to compute properly. 

 
The main effect of music is shown by the F-ratio in the row labeled music; in this case the 

significance is much lower than the usual cut-off point of .05. Hence, we can say that there 
was a significant effect of the type of music on the ratings. To understand what this actually 
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means, we need to look at the mean ratings for each type of music when we ignore whether 
the person giving the rating was old or young: 
 
bar <- ggplot(fugaziData, aes(music, liking)) 
 
bar + stat_summary(fun.y = mean, geom = "bar", position="dodge") + 
stat_summary(fun.data = mean_cl_normal, geom = "errorbar", 
position=position_dodge(width=0.90), width = 0.2) + labs(x = "Music", y = "Mean 
Liking Rating")  
 

 
What this graph shows is that the significant main effect of music is likely to reflect the fact 
that ABBA were rated (overall) much more positively than the other two artists. 

The main effect of age is shown by the F-ratio in the row labelled age; the probability 
associated with this F-ratio is 0.966, which is so close to 1 that it means that it is a virtual 
certainty that this F could occur by chance alone. Again, to interpret the effect we need to 
look at the mean ratings for the two age groups ignoring the type of music to which they 
listened.  
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This graph shows that when you ignore the type of music that was being rated, older people, 
on average, gave almost identical ratings to younger people (i.e. the mean ratings in the two 
groups are virtually the same). 

The interaction effect is shown by the F-ratio in the row labeled age:music; the associated 
significance value is again much less than the criterion of .05. Therefore, we can say that 
there is a significant interaction between age and the type of music rated. To interpret this 
effect we need to look at the mean ratings in all conditions, and these means were originally 
plotted at the beginning of this answer. The fact there is a significant interaction tells us that 
for certain types of music the different age groups gave different ratings. In this case, 
although they agree on ABBA, there are large disagreements in ratings of Fugazi and Barf 
Grooks. 

To view the results of the orthogonal contrasts that we specified earlier, execute the 
following command: 
 
summary.lm(fugaziModel) 

 
Coefficients: 
             Estimate Std. Error t value Pr(>|t|)     
(Intercept)  19.53333    2.07509   9.413 8.74e-15 *** 
music1      -21.25000    1.46731 -14.482  < 2e-16 *** 
music2       -3.11667    2.54146  -1.226    0.224     
age1          0.08889    2.07509   0.043    0.966     
music1:age1  -1.00556    1.46731  -0.685    0.495     
music2:age1  71.95000    2.54146  28.310  < 2e-16 *** 
 
 

• age1: This is the contrast for the main effect of age; because age has only two 
groups this is the same as the effect of age from the ANOVA output. 

• music1: This contrast compares ABBA to Fugazi and Barf Grooks. This tests whether 
the mean of the ABBA group is different to the mean of the Fugazi and Barf Grooks 
groups combined. The p-value is much smaller than .05, indicating a significant 
difference. So we could conclude that liking is significantly different for ABBA 
compared to Fugazi and Barf Grooks. Looking at the error bar graph, we can see that 
liking is significantly higher for ABBA than for Fugazi and Barf Grooks  

• music2: This contrast tests whether the mean liking of Fugazi is different to the mean 
liking of Barf Grooks. The p-value is .22, which is larger than .05, and therefore 
indicates a non-significant difference between the two music groups. We can 
conclude that liking is similar for Fugazi and Barf Grooks.  
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• music1:age1: This contrast tests whether the effect of music1 described above is 
different in the different age groups, 0–40 and 40+. It answers the question: ‘is the 
combined effect of Fugazi and Barf Grooks, compared to ABBA, on liking comparable 
in the different age groups?’ The p-value is .50, which is non-significant, so the 
answer is ‘yes, the extent to which Fugazi and Barf Grooks vs. ABBA has an effect 
on liking is not significantly different in people who are under 40 and those who are 
over 40’. 

• music2:age1: This contrast tests whether the effect of music2 described above is 
different in the two age groups. It answers the question: ‘is the effect of Fugazi 
compared to Barf Grooks on liking ratings comparable in the two age groups?’ The p-
value is significant, so the answer is ‘no, the extent to which Fugazi and Barf Grooks 
has an effect on liking rating is different in two age groups’. We can see from the 
graph above that when people listened to Fugazi the older ages rated it very low, but 
the younger people rated it very highly. A reverse trend is found for the ratings for 
Barf Grooks: the under 40’s give it low ratings while the over 40’s gave it comparably 
high ratings.  

Because we have conducted some contrasts, we do not need to look at post hoc tests as 
they should just tell us what we have already found out from the contrasts above. However, I 
will show you how you conduct some post hoc tests anyway for the sake of practice. 

Given that we found a main effect of music, and of the interaction between music and age, 
we can look at some of the post hoc tests to establish where the difference lies. Let’s conduct 
a Bonferroni post hoc test. We can do this by executing the following command: 
 
pairwise.t.test(fugaziData$liking, fugaziData$music, p.adjust.method = "bonferroni") 
    
            Fugazi   Abba    
Abba        0.00026   -       
Barf Grooks 1.00000 0.00099 
 
The output shows the result of the Bonferroni post hoc tests. First, ratings of Fugazi are 
compared to ABBA, which reveals a significant difference (the significance value is less than 
.05), and then Barf Grooks, which reveals no difference (the significance value is greater than 
.05). In the next column, ratings of ABBA are compared to Barf Grooks, which reveals a 
significant difference (the significance value is below .05).  

 
Calculating effect sizes 
First, make sure that you have executed the function from Chapter 12. After you have done 
this once, you do not need to execute it again. Having executed this function we can use it to 
calculate omega squared in the current data by using values of n (15 people per group), a 
(levels of age = 2), b (levels of music = 3) and the four sums of squares from the ANOVA 
output above: 

 
omega_factorial(15,2,3,1,81864,310790,32553) 

 
[1] "Omega-Squared A:  -0.000908223141102699" 
[1] "Omega-Squared B:  0.19053049613252" 
[1] "Omega-Squared AB:  0.728426175925751" 

 
For the main effect of age we get, = −.00; for the main effect of music we get,  = 

.19; and for the interaction,  = ω2 = .73. 
 
Interpreting and writing the result 
As with the other ANOVAs we’ve encountered, we have to report the details of the F-ratio and 
the degrees of freedom from which it was calculated. For the various effects in these data the 
F-ratios will be based on different degrees of freedom: they were derived from dividing the 
mean squares for the effect by the mean squares for the residual. For the effects of music 
and the music × age interaction, the model degrees of freedom were 2 (dfM = 2), but for the 
effect of age the degrees of freedom were only 1 (dfM = 1). For all effects, the degrees of 
freedom for the residuals were 84 (dfR = 84). We can, therefore, report the three effects from 
this analysis as follows: 
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 The main effect of age on the ratings of the music was non-significant (F(1, 84) = .00, 
p = 1, ω2 = −.00). 

 The results show that the main effect of the type of music listened to significantly 
affected the ratings of that music (F(2, 84) = 105.62, p < .001, ω2 = .19). The 
Bonferroni post hoc test revealed that ABBA were rated significantly higher than both 
Fugazi and Barf Grooks (both ps < .01). 

 The interaction between music and age was significant (F(2, 84) = 400.98, p < .001, 
ω2 = .73), indicating that different types of music were rated differently by the two age 
groups. Specifically, Fugazi were rated more positively by the young group (M = 
66.20, SD = 19.90) than the old (M = –75.87, SD = 14.37); ABBA were rated fairly 
equally in the young (M = 64.13, SD = 16.99) and old groups (M = 59.93, SD = 
19.98); Barf Grooks was rated less positively by the young group (M = –71.47, SD = 
23.17) compared to the old (M = 74.27, SD = 22.29). These findings indicate that 
there is no hope for me — the minute I hit 40 I will suddenly start to love country and 
western music and will burn all of my Fugazi CDs (it will never happen … arghhhh!!!).  

Task 2 

• In Chapter 3 we used some data that related to men and women’s arousal levels 
when watching either Bridget Jones’s Diary or Memento (ChickFlick.dat). Analyse 
these data to see whether men and women differ in their reactions to different types 
of films. 

First of all, load in the data: 
chickFlick<-read.delim("ChickFlick.dat", header = TRUE) 
 
If you execute: 
 
chickFlick 
 
You will be able to view the contents of the dataframe. If the data have loaded in as text then 
you do not need to set the categorical variables gender and film to be factors. However, if 
the data have loaded as numbers then you do need to set these variables to be factors. In my 
case, the data have loaded as text and so I do not need to set gender and film to be factors, 
as R has already assumed that they are factors. 

Next, let’s run Levene’s test: 
leveneTest(chickFlick$arousal, interaction(chickFlick$film, chickFlick$gender), center 
= median) 
 
Levene's Test for Homogeneity of Variance (center = median) 
      Df F value Pr(>F) 
group  3  0.8311 0.4856 
      36     
The output shows that for these data the significance value is 0.486, which is greater than the 
criterion of .05. This means that the variances in the different experimental groups are roughly 
equal (i.e. not significantly different), and that the assumption has been met.  

Next we can conduct the ANOVA, remembering to set some orthogonal contrasts. We need 
to set orthogonal contrasts even though both of the variables (gender and film) have only two 
levels, otherwise the Type III sums of squares will not compute properly: 

 
contrasts(chickFlick$film)<-c(-1, 1) 
contrasts(chickFlick$gender)<-c(-1, 1) 
chickFlick<-aov(arousal ~ gender*film, data = chickFlick) 
Anova(chickFlick, type="III") 

Anova Table (Type III tests) 
 
Response: arousal 
             Sum Sq Df  F value    Pr(>F)     
(Intercept) 16040.0  1 393.4325 < 2.2e-16 *** 
gender         87.0  1   2.1346    0.1527     
film         1092.0  1  26.7854  8.78e-06 *** 
gender:film    34.2  1   0.8395    0.3656     
Residuals    1467.7 36                     
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The main effect of gender is shown by the F-ratio in the row labelled gender; in this case the 
significance is .15, which is greater than the usual cut-off point of .05. Hence, we can say that 
there was not a significant effect of gender on arousal during the films. To understand what 
this actually means, we need to look at the mean arousal levels for men and women (when 
we ignore which film they watched). We can look at this by creating an error bar graph: 

 
bar <- ggplot(chickFlick, aes(gender, arousal)) 
 
bar + stat_summary(fun.y = mean, geom = "bar", position="dodge") + 
stat_summary(fun.data = mean_cl_normal, geom = "errorbar", 
position=position_dodge(width=0.90), width = 0.2) + labs(x = "Gender", y = "Mean 
Arousal") 

 
What this graph shows is that arousal levels were quite similar for men and women in 
general; this is why the main effect of gender was non-significant. 

The main effect of film is shown by the F-ratio in the row labelled film; the probability 
associated with this F-ratio is much less than the critical value of .05, hence we can say that 
arousal levels were significantly different in the two films. Again, to interpret the effect we 
need to look at the mean arousal levels but this time comparing the two films (and ignoring 
whether the person was male or female).  

 
bar <- ggplot(chickFlick, aes(film, arousal)) 
 
bar + stat_summary(fun.y = mean, geom = "bar", position="dodge") + 
stat_summary(fun.data = mean_cl_normal, geom = "errorbar", 
position=position_dodge(width=0.90), width = 0.2) + labs(x = "Film", y = "Mean 
Arousal") 
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This graph shows that when you ignore the gender of the person, arousal levels were 
significantly higher for Memento than for Bridget Jones’s Diary. 

The interaction effect is shown by the F-ratio in the row labelled gender:film; the associated 
significance value is 0.366, which is greater than the criterion of .05. Therefore, we can say 
that there is not a significant interaction between gender and the type of film watched. To 
interpret this effect we need to look at the mean arousal in all conditions.  

 
bar <- ggplot(chickFlick, aes(gender, arousal, fill = film)) 
 
bar + stat_summary(fun.y = mean, geom = "bar", position="dodge") + 
stat_summary(fun.data = mean_cl_normal, geom = "errorbar", 
position=position_dodge(width=0.90), width = 0.2) + labs(x = "Gender", y = "Mean 
Arousal", fill = "Film")  
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This graph shows the non-significant interaction: arousal levels are higher for Memento than 
for Bridget Jones’s Diary in both men and women (i.e. the difference between the green and 
blue bars is more or less the same for men and women).  

We could view the orthogonal contrasts that we set earlier by executing: 
 
summary.lm(chickFlick) 
 

Coefficients: 
              Estimate Std. Error t value Pr(>|t|)     
(Intercept)     20.025      1.010  19.835  < 2e-16 *** 
gender1          1.475      1.010   1.461    0.153     
film1            5.225      1.010   5.175 8.78e-06 *** 
gender1:film1   -0.925      1.010  -0.916    0.366     

 
Looking at the output for the contrasts above we can see that it is the same as the ANOVA 
output. This is because gender and film both have only two levels.  
 
Calculating effect sizes 

 
If you have already created the function from Chapter 12 then you do not need to execute it 
again. If not, go back to Chapter 12 and execute the function. 

Once you have executed the function, you can use it to calculate omega squared in the 
current data by using values of n (10 people per group), a (levels of gender = 2), b (levels of 
film = 2) and the four sums of squares from the ANOVA output above: 

 
omega_factorial(10,2,2,87,1092,34.2,1467.7) 

 
[1] "Omega-Squared A:  0.0169861022799528" 
[1] "Omega-Squared B:  0.386244757864097" 
[1] "Omega-Squared AB:  -0.00241375544625899" 
 

For the main effect of gender we get,  = 0.02; for the main effect of film we get,  = 

.39; and for the interaction,  = −0.00. 
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Interpreting and writing the result 
We can report the three effects from this analysis as follows: 

• The results show that the main effect of the type of film significantly affected arousal 
during that film, F(1, 36) = 26.79, p < .001, ω2 = .39; arousal levels were significantly 
higher during Memento compared to Bridget Jones’s Diary. 

• The main effect of gender on arousal levels during the films was non-significant, F(1, 
36) = 2.83,  p > .05, ω2 = .02.  

• The gender × film interaction was non-significant, F(1, 36) = .84, p > .05, ω2 = −.00. 
This showed that arousal levels were higher for Memento compared to Bridget 
Jones’s Diary in both men and women. 

 

Task 3 

• At the start of this chapter I described a way of empirically researching whether I 
wrote better songs than my old band mate Malcolm, and whether this depended on 
the type of song (a symphony or song about flies). The outcome variable would be 
the number of screams elicited by audience members during the songs. These data 
are in the file Escape From Inside.dat. Draw an error bar graph (lines) and analyse 
and interpret these data. 

Read in the data: 
escapeData<-read.delim("Escape From Inside.dat", header = TRUE) 
 

Next, set  Song Type and Songwriter to be factors, which is necessary because R has 
loaded the data into the dataframe as numbers rather than text: 

 
escapeData$Song_Type<-factor(escapeData$Song_Type, levels = c(0:1), labels = 
c("Symphony", "Fly Song")) 
 
escapeData$Songwriter<-factor(escapeData$Songwriter, levels = c(0:1), labels = 
c("Malcom", "Andy")) 
 

To draw an error line graph, execute the following commands: 
 

line <- ggplot(escapeData, aes(Song_Type, Screams, colour = Songwriter)) 
 

line + stat_summary(fun.y = mean, geom = "point") + stat_summary(fun.y = mean, geom = 
"line", aes(group= Songwriter)) + stat_summary(fun.data = mean_cl_boot, geom = 
"errorbar", width = 0.2) + labs(x = "Type of Song", y = "Mean Number of Screams 
Elicited by the Song", colour = "Songwriter")  

 

  

 
 
 
 
 
 
 
 
 
 
 
 
The resulting graph looks like this: 
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Next we can conduct Levene’s test by executing the following command: 

  
leveneTest(escapeData$Screams, interaction(escapeData$Song_Type, 
escapeData$Songwriter), center = median) 

 
The following output shows that for these data, the significance value is 0.857, which is 
greater than the criterion of .05. This means that the variances in the different experimental 
groups are roughly equal (i.e. not significantly different), and that the assumption has been 
met.  
 
Levene's Test for Homogeneity of Variance (center = median) 
      Df F value Pr(>F) 
group  3  0.2563 0.8566 
      64               
 

Next we can conduct the two-way independent ANOVA and set some orthogonal contrasts.  
 

contrasts(escapeData$Song_Type)<-c(-1, 1) 
contrasts(escapeData$Songwriter)<-c(1, -1) 
escapeModel<-aov(Screams ~ Song_Type*Songwriter, data = escapeData) 
Anova(escapeModel, type="III") 

 
Anova Table (Type III tests) 
 
Response: Screams 
                     Sum Sq Df   F value    Pr(>F)     
(Intercept)          3574.3  1 1006.4141 < 2.2e-16 *** 
Song_Type              74.1  1   20.8737 2.293e-05 *** 
Songwriter             35.3  1    9.9420  0.002460 **  
Song_Type:Songwriter   18.0  1    5.0725  0.027747 *   
Residuals             227.3 64                         
 
In the ANOVA output above, the main effect of the type of song is shown by the F-ratio in the 
row labelled Song_Type; in this case the significance is much smaller than the usual cut-off 
point of .05. Hence, we can say that there was a significant effect of the type of song on the 
number of screams elicited while it was played. We can draw an error bar graph by executing 
the following commands:  
bar <- ggplot(escapeData, aes(Song_Type, Screams)) 

 
bar + stat_summary(fun.y = mean, geom = "bar", position="dodge") + 
stat_summary(fun.data = mean_cl_normal, geom = "errorbar", 
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position=position_dodge(width=0.90), width = 0.2) + labs(x = "Type of Song", y = "Mean 
Number of Screams Elicited by the Song") 
 
The resulting graph shows that the two symphonies elicited significantly more screams of 
agony than the two songs about flies. 
 

 

 

 
The main effect of the songwriter was significant because the significance of the F-ratio for 

this effect is .002, which is less than the critical value of .05, hence we can say that Andy and 
Malcolm differed in the reactions to their songs. We can draw an error bar graph by executing 
the following commands:  

 
bar <- ggplot(escapeData, aes(Songwriter, Screams)) 
 
bar + stat_summary(fun.y = mean, geom = "bar", position="dodge") + 
stat_summary(fun.data = mean_cl_normal, geom = "errorbar", 
position=position_dodge(width=0.90), width = 0.2) + labs(x = "Songwriter", y = "Mean 
Number of Screams Elicited by the Song") 
 
The resulting graph tells us that Andy’s songs elicited significantly more screams of torment 
from the audience than Malcolm’s songs.   
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The interaction effect was significant too because the associated significance value is 0.028, 

which is less than the criterion of .05. Therefore, we can say that there is a significant 
interaction effect between the type of song and who wrote it on people’s appreciation of the 
song. The line graph that you drew earlier on tells us that although reactions to Malcolm’s and 
Andy’s were fairly similar for the flies song, they differed quite a bit for the symphony: Andy’s 
symphony elicited more screams of torment than Malcolm’s. We can conclude that in general 
Malcolm was a better songwriter than Andy, but the interaction tells us that this effect is true 
mainly for symphonies. 
 
Calculating effect sizes 
Assuming that you have written and executed the function in Chapter 12, we can calculate 
omega squared in the current data by using values of n (17 people per group), a (levels of 
Song_Type = 2), b (levels of Songwriter = 2) and the four sums of squares from the ANOVA 
output above: 

 
omega_factorial(17,2,2,74.1,35.3,18,227.3) 

 
[1] "Omega-Squared A:  0.196924298131986" 
[1] "Omega-Squared B:  0.0886205136928049" 
[1] "Omega-Squared AB:  0.0403304242392523" 
 

For the main effect of song type we get  = .20; for the main effect of songwriter we 

get  = .09; and for the interaction,  = .04. 
  

Interpreting and writing the result 
We can, report the three effects from this analysis as follows: 

 The results show that the main effect of the type of song significantly affected 
screams elicited during that song, F(1, 64) = 20.87, p < .001, ω2 = .20; the two 
symphonies elicited significantly more screams of agony than the two songs about 
flies. 

 The main effect of the songwriter significantly affected screams elicited during that 
song, F(1, 64) = 9.94, p < .01, ω2 = .09; Andy’s songs elicited significantly more 
screams of torment from the audience than Malcolm’s songs. 

 The song type × songwriter interaction was significant, F(1, 64) = 5.07, p < .05, ω2 = 
.04. Although reactions to Malcolm’s and Andy’s were fairly similar for the flies song, 
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they differed quite a bit for the symphony: Andy’s symphony elicited more screams of 
torment than Malcolm’s. 

 

Task 4 

• Using R’s Souls’ Tip 12.2, conduct a simple effects analysis of the effect of alcohol at 
different levels of gender (which is the opposite to the example in the chapter). 

As always, the first thing to do is load in the data: 
 
gogglesData<-read.csv("goggles.csv", header = TRUE) 

 
Next we need to create a variable in the dataframe that merges the variables of interest into 

a single factor: 
gogglesData$simple<-gl(6,8) 

 
We can then use the factor() function to specify labels for these six groups: 

 
gogglesData$simple<-factor(gogglesData$simple, levels = c(1:6), labels = 
c("Male_0","Male_2", "Male_4","Female_0","Female_2", "Female_4")) 

 
Next we create contrasts that break these six groups up using the standard rules for planned 

contrasts. We want to break the groups up into five contrasts to do simple effects analysis of 
alcohol. The first contrast compares men to women (genderEffect1). Remember that these 
two chunks of variation are made up of the different alcohol groups and so need to be broken 
down further. The second contrast (MaleEffect1) compares men who drank no alcohol to men 
who drank some alcohol (2 pints and 4 pints combined). The third contrast (MaleEffect2) 
breaks down the ‘alcohol’ chunk in men to compare 2 pints to 4 pints in men. The fourth 
contrast (FemaleEffect1) compares women who had no alcohol to women who drank some 
alcohol (2 pints and 4 pints combined). Finally, the fifth contrast (FemaleEffect2) breaks down 
the female ‘alcohol’ chunk to compare 2 pints to 4 pints in women. 
 
genderEffect1<-c(1, 1, 1, -1, -1, -1) 
MaleEffect1<-c(0, 0, 0, -2, 1, 1) 
MaleEffect2<-c(0, 0, 0, 0, 1, -1) 
FemaleEffect1<-c(-2, 1, 1, 0, 0, 0) 
FemaleEffect2<-c(0, 1, -1, 0, 0, 0) 
simpleEff<-cbind(genderEffect1, MaleEffect1, MaleEffect2, FemaleEffect1, 
FemaleEffect2) 
 
contrasts(gogglesData$simple)<-simpleEff 
simpleEffectModel<-aov(attractiveness ~ simple, data = gogglesData) 
summary.lm(simpleEffectModel) 

 
 
Coefficients: 
                    Estimate Std. Error t value Pr(>|t|)     
(Intercept)          58.3333     1.3153  44.351  < 2e-16 *** 
simplegenderEffect1   1.8750     1.3153   1.426 0.161382     
simpleMaleEffect1    -5.2083     1.3153  -3.960 0.000284 *** 
simpleMaleEffect2    15.6250     2.2781   6.859 2.31e-08 *** 
simpleFemaleEffect1  -0.2083     1.3153  -0.158 0.874903     
simpleFemaleEffect2   2.5000     2.2781   1.097 0.278716     
 
 

MaleEffect1 is significant, indicating a significant effect of alcohol for men: men who 
consumed some alcohol (2 pints or 4 pints) chose significantly less attractive dates than men 
who consumed no alcohol. MaleEffect2 was also significant, suggesting that the effect of 
drinking 4 pints is significantly different from drinking 2 pints in men. Think back to the chapter 
– this reflects the fact that men choose very unattractive dates after 4 pints. However, there is 
no significant effect of alcohol for females (FemaleEffect1 and FemaleEffect2 are both non 
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significant). This tells us that women are not affected by the beer-goggles effect: the 
attractiveness of their dates does not change as they drink more. 

Task 5 

• Back in 2008, hospitals were reporting an increase in injuries related to playing 
Nintendo Wii (http://www.telegraph.co.uk/news/uknews/1576244/Spate-of-injuries-
blamed-on-Nintendo-Wii.html). These injuries were attributed mainly to muscle and 
tendon strains. A researcher was interested to see whether these injuries could be 
prevented. She hypothesized that a stretching warm-up before playing Wii would help 
lower injuries, and that athletes would be less susceptible to injuries because their 
regular activity should make them more flexible. She took 60 athletes and 60 non-
athletes (athlete), half of them played Wii and half watched others playing as a 
control (wii), and within these groups half did a 5-minute stretch routine before 
playing/watching whereas the other half did not (stretch). The outcome was a pain 
score out of 10 (where 0 is no pain, and 10 is severe pain) after playing for 4 hours 
(injury). The data are in the file Wii.dat. Conduct a three-way ANOVA to test whether 
athletes are less prone to injury, and whether the prevention programme worked. 

 
First of all, load the data into a dataframe called athleteData: 

athleteData<-read.delim("Wii.dat", header = TRUE) 

Next, we need to test for homogeneity of variance using the Levene’s test: 
 

leveneTest(athleteData$injury, interaction(athleteData$athlete, athleteData$stretch, 
athleteData$wii), center = median) 
 
Levene's Test for Homogeneity of Variance (center = median) 
       Df F value  Pr(>F)   
group   7  2.1378 0.04523 * 
      112            

 
The test is significant, F(7, 112) = 2.14, p < .05, suggesting that the assumption of 
homogeneity of variance has been violated. This means that we need to conduct a robust 
ANOVA on these data. I will first of all go through how you would conduct a normal ANOVA 
on these data, followed by how you would conduct a robust ANOVA.  

To run the normal three-way ANOVA we would execute the following commands (remember 
you must set orthogonal contrasts if using Type III sums of squares): 

 
contrasts(athleteData$athlete)<-c(-1, 1) 
contrasts(athleteData$stretch)<-c(-1, 1) 
contrasts(athleteData$wii)<-c(-1, 1) 
 
athleteModel<-aov(injury ~ athlete*stretch*wii, data = athleteData) 
Anova(athleteModel, type="III") 
 
Response: injury 
                     Sum Sq  Df  F value    Pr(>F)     
(Intercept)         1003.41   1 656.9470 < 2.2e-16 *** 
athlete               99.01   1  64.8223 9.595e-13 *** 
stretch               16.87   1  11.0483 0.0012001 **  
wii                   85.01   1  55.6563 1.982e-11 *** 
athlete:stretch        1.88   1   1.2276 0.2702496     
athlete:wii           69.01   1  45.1808 7.869e-10 *** 
stretch:wii           21.68   1  14.1910 0.0002651 *** 
athlete:stretch:wii    9.08   1   5.9415 0.0163612 *   
Residuals            171.07 112                   
      
The results show that there was a significant main effect of athlete, F(1, 112) = 64.82, p < 
.001. To help us interpret this significant effect we could plot an error bar chart by executing 
the following commands: 

athleteME <- ggplot(athleteData, aes(athlete, injury)) 
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athleteME + stat_summary(fun.y = mean, geom = "bar", fill = "White", colour = "Black") 
+ stat_summary(fun.data = mean_cl_boot, geom = "pointrange") + labs(x = "Athlete", y = 
"Mean Injury Score") + scale_y_continuous(breaks=seq(0,10, by = 1), limits = c(0, 10)) 

 
The resulting graph shows that on average, athletes had significantly lower injury scores than 
non-athletes.  

There was also a significant main effect of stretch, F(1, 112) = 11.05, p < .01. We can plot 
an error bar graph to help us to interpret the effect of stretch by executing: 

stretchME <- ggplot(athleteData, aes(stretch, injury)) 

stretchME + stat_summary(fun.y = mean, geom = "bar", fill = "White", colour = "Black") 
+ stat_summary(fun.data = mean_cl_boot, geom = "pointrange") + labs(x = "Stretching 
Routine", y = "Mean Injury Score") + scale_y_continuous(breaks=seq(0,10, by = 1), 
limits = c(0, 10)) 

 
Looking at the error bar graph, we can see that stretching significantly decreased injury score 
compared to no stretching. However, the interaction graph (see below) tells us that this is true 
only for athletes and non-athletes who played on the Wii, not for those in the control group. 
This is an example of how main effects can sometimes be misleading. 

There was also a significant main effect of wii, F(1, 112) = 55.66, p < .001. Lets again plot 
an error bar graph to help us to interpret the significant effect: 

wiiME <- ggplot(athleteData, aes(wii, injury)) 
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wiiME + stat_summary(fun.y = mean, geom = "bar", fill = "White", colour = "Black") + 
stat_summary(fun.data = mean_cl_boot, geom = "pointrange") + labs(x = "Wii Activity", 
y = "Mean Injury Score") + scale_y_continuous(breaks=seq(0,10, by = 1), limits = c(0, 
10)) 

 
The resulting graph tells us (not surprisingly) that playing on the Wii resulted in a significantly 
higher injury score compared to watching other people playing on the Wii (control).  

There was not a significant athlete × stretch interaction F(1, 112) = 1.23, p > .05. Let’s plot 
an interaction graph to help us to interpret this non-significant effect: 

athletestretchInt <- ggplot(athleteData, aes(stretch, injury, colour = athlete)) 

athletestretchInt + stat_summary(fun.y = mean, geom = "point") + stat_summary(fun.y = 
mean, geom = "line", aes(group= athlete)) + stat_summary(fun.data = mean_cl_boot, geom 
= "errorbar", width = 0.2) + labs(x = "Stretching Routine", y = "Mean Injury Score", 
colour = "Athlete") + scale_y_continuous(breaks=seq(0,10, by = 1), limits = c(0, 10)) 

 
The resulting graph shows that (not taking playing/watching the Wii into account) while non-
athletes had higher injury scores than athletes overall, stretching decreased the number of 
injuries in both athletes and non-athletes by roughly the same amount. Parallel lines usually 
indicate a non-significant interaction effect and so it is not surprising, looking at this graph, 
that the interaction between stretch and athlete was non-significant.  

There was a significant athlete × wii interaction, F(1, 112) = 45.18, p < .001. To plot an 
interaction graph, we can execute: 

athleteWiiInt <- ggplot(athleteData, aes(wii, injury, colour = athlete)) 
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athleteWiiInt + stat_summary(fun.y = mean, geom = "point") + stat_summary(fun.y = 
mean, geom = "line", aes(group= athlete)) + stat_summary(fun.data = mean_cl_boot, geom 
= "errorbar", width = 0.2) + labs(x = "Wii Activity", y = "Mean Injury Score", colour 
= "Athlete") + scale_y_continuous(breaks=seq(0,10, by = 1), limits = c(0, 10)) 

 
The resulting graph shows that (not taking stretching into account) when playing on the Wii, 
non-athletes suffered significantly higher injury scores than athletes. However, when watching 
other people playing on the Wii, athletes and non-athletes had very similar injury scores.  

There was a significant stretch × wii interaction, F(1, 112) = 14.19, p < .001. To plot an 
interaction graph to help us to interpret this result, we can execute: 

stretcheWiiInt <- ggplot(athleteData, aes(wii, injury, colour = stretch)) 

stretcheWiiInt + stat_summary(fun.y = mean, geom = "point") + stat_summary(fun.y = 
mean, geom = "line", aes(group= stretch)) + stat_summary(fun.data = mean_cl_boot, geom 
= "errorbar", width = 0.2) + labs(x = "Wii Activity", y = "Mean Injury Score", colour 
= "Stretching Routine") + scale_y_continuous(breaks=seq(0,10, by = 1), limits = c(0, 
10)) 

 
The resulting graph shows that (not taking athlete into account) stretching before playing on 
the Wii significantly decreased injury scores, but stretching before watching other people 
playing on the Wii did not significantly reduce injury scores. This is not surprising as watching 
other people playing on the Wii is unlikely to result in sports injury! 

There was a significant athlete × stretch × wii interaction, F(1, 112) =  5.94, p < .05.  What 
this actually means is that the effect of stretching and playing on the Wii on injury score was 
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different for athletes than it was for non-athletes. In the presence of this significant interaction 
it makes no sense to interpret the main effects. Let’s plot an interaction graph for this effect by 
executing: 

threeWayInt <- ggplot(athleteData, aes(wii, injury, colour = stretch)) 

threeWayInt + stat_summary(fun.y = mean, geom = "point") + stat_summary(fun.y = mean, 
geom = "line", aes(group= stretch)) + stat_summary(fun.data = mean_cl_boot, geom = 
"errorbar", width = 0.2) + labs(x = "Wii Activity", y = "Mean Injury Score", colour = 
"Stretching Routine") + facet_wrap(~athlete) + scale_y_continuous(breaks=seq(0,10, by 
= 1), limits = c(0, 10)) 

 

 
The resulting graph clearly shows that for athletes, stretching and playing on the Wii has very 
little effect: their mean injury score is quite stable across the two conditions (whether they 
played on the Wii or watched other people playing on the Wii, stretched or did no stretching). 
However, for the non-athletes, watching other people play on the Wii compared to not 
stretching and playing on the Wii rapidly declines their mean injury score. The interaction tells 
us that stretching and watching rather than playing on the Wii both result in a lower injury 
score and that this is true only for non-athletes. In short, the results show that athletes are 
able to minimize their injury level regardless of whether they stretch before exercise or not, 
whereas non-athletes only have to bend slightly and they get injured! Although I wonder if we 
would get the same results using the Arsenal football team … 

To view the output of the contrasts that we specified, execute: 
 
summary.lm(athleteModel) 
 
Doing so will display the parameter estimates for the model: 
 
                     Estimate Std. Error    t value Pr(>|t|)     
(Intercept)              2.8917     0.1128  25.631  < 2e-16 *** 
athlete1                 0.9083     0.1128   8.051 9.60e-13 *** 
stretch1                -0.3750     0.1128  -3.324 0.001200 **  
wii1                    -0.8417     0.1128  -7.460 1.98e-11 *** 
athlete1:stretch1       -0.1250     0.1128  -1.108 0.270250     
athlete1:wii1           -0.7583     0.1128  -6.722 7.87e-10 *** 
stretch1:wii1            0.4250     0.1128   3.767 0.000265 *** 
athlete1:stretch1:wii1   0.2750     0.1128   2.438 0.016361 *   

 
However, because athlete, stretch and wii all have only two groups, all these effects are the 
same as in the ANOVA output above! 

To view the plots that we can use to test the assumptions of ANOVA, we can execute:  
 
plot(athleteModel) 
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The graph on the left can be used for testing homogenity of variance (which we already know 
has been violated): if it has a funnel shape then we’re in trouble. The plot we have does show 
funnelling, which implies that the residuals might be heteroscedastic. The plot on the right is a 
Q-Q plot, which tells us about the normality of residuals in the model. We want our residuals 
to be normally distributed, which means that the dots on the graph should hover around the 
diagonal line. In ours, this is the case suggesting that we can assume normality of our 
residuals/errors. 

You may remember that, earlier on in the analysis, we obtained a significant result for 
Levene’s test, therefore in reality we would need to conduct a robust analysis on these data. 
To do this we need to first transform our data into the wide format rather than long. 
Essentially, we want levels of our three factors to be represented in different columns. 
Therefore, rather than a dataframe with 4 columns and 120 rows, we want one with 8 
columns and 15 rows. 

We are going to use melt() and cast() to do the restructuring for us. To get the restructuring 
to work, we need to add a new variable to our dataframe that identifies the rows in the wide 
format. It will be a value from 1 to 15 telling us whether the score is in the first, second, third, 
etc. score within the chunk. At the moment the chunks are stacked on top of each other, so 
we want a variable that is the sequence of numbers 1 to 15 repeated for each of the eight 
chunks. We can add this variable (which I will call row) by executing:  

 
athleteData$row<-rep(1:15, 8) 

 
Now that we have changed the data set we need to make it molten so that we can cast the 

data into the wide format. To do this we use the melt() function. Remember that in this 
function we differentiate variables that identify attributes of the scores (in this case, athlete, 
stretch, wii and row  all tell us about a given injury score) from the scores or measured 
variables themselves. Attributes are specified with the id option, and scores with the 
measured option. Therefore, we can create a molten dataframe called athleteMelt by 
executing: 
 
athleteMelt<-melt(athleteData, id = c("row", "athlete", "stretch", "wii"), measured = 
c( "injury")) 

 
Having melted the data, we want to cast it in the wide format using cast(). To do this we use 

a formula in the form: variables specifying the rows ~ variables specifying the columns. In this 
case, row tells us which row to place a score, and we want the athlete, stretch and wii 
variables split across different columns, so we’d use the formula: row ~ athlete + stretch + wii. 
Therefore, we can make a wide dataframe called athleteWide by executing: 
 
athleteWide<-cast(athleteMelt,  row ~ athlete + stretch + wii) 
 
We have now transformed our data into the wide format! We can now remove the variable 
row (as we no longer need it) by executing: 
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athleteWide$row<-NULL 
 

If you look at the dataframe you’ll see a lovely wide format set of data: 
 

athleteWide 

It is important to view the data set and note the order of the columns because this affects how 
we specify the robust analysis (well … not really in this case because all three variables have 
two levels and so it doesn’t really matter). In this case the hierarchy of the independent 
variables is athlete, followed by stretching, followed by wii. We would say that athlete is 
factor A, stretching is factor B and wii is factor C. 

To perform a three-way independent ANOVA on trimmed means, we can adapt the function 
t2way() by replacing 2 with 3 so it becomes t3way(). The function t3way() will take the general 
form (assuming we are happy with the default level of trimming): 

t3way(levels of factor A, levels of factor B, levels of factor C, dataframe) 

Therefore, we can do a robust three-way factorial ANOVA based on trimmed means by 
executing: 
 
t3way(2,2,2, athleteWide) 
 
$Qa 
[1] 44.17362 
 
$Qa.crit 
[1] 4.037312 
 
$A.p.value 
[1] 1e-04 
 
$Qb 
[1] 6.956038 
 
$Qb.crit 
[1] 4.037312 
 
$B.p.value 
[1] 0.012 
 
$Qc 
[1] 38.74235 
 
$Qc.crit 
[1] 12.17617 
 
$C.p.value 
[1] 0.001 
 
$Qab 
[1] 1.880913 
 
$Qab.crit 
[1] 1.876811 
 
$AB.p.value 
[1] 0.177 
 
$Qac 
[1] 33.66722 
 
$Qac.crit 
[1] 12.17617 
 
$AC.p.value 
[1] 0.001 
 
$Qbc 
[1] 9.360045 
 
$Qbc.crit 
[1] 9.093685 
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$BC.p.value 
[1] 0.004 
 
$Qabc 
[1] 3.216472 
 
$Qabc.crit 
[1] 3.196099 
 
$ABC.p.value 
[1] 0.08 
 
In the output above, we are given a test statistic for factor A ($Qa), factor B ($Qb), factor C 
($Qc), the interaction between factors A and B ($Qab), the interaction between factors A and 
C ($Qac), the interaction between factors B and C ($Qbc) and the three way interaction 
($Qabc) as well as their corresponding p-value ($A.p.value, $B.p.value, $C.p.value, 
$AB.p.value, $AC.p.value, $BC.p.value and $ABC.p.value, respectively). Remember that 
factor A was athlete, factor B was stretch, factor C was wii. Therefore, we could conclude 
that there was a significant main effect of athlete, Q = 44.17, p < .001, a significant main 
effect of stretch, Q = 6.96, p < .05, a significant main effect of wii, Q = 38.74, p < .01, a non-
significant athlete × stretch interaction, Q = 1.88, p = .18, a significant athlete × wii 
interaction effect, Q = 33.67, p < .01, a significant stretch × wii interaction, Q = 9.36, p < .01, 
and a non-significant three-way interaction between athlete × stretch × wii, Q = 3.22, p = 
.08. 
 


